A Super Simple Sour Gas Boiler (2024)

So in the course of my crusade to extract as much water out of my asteroid as humanly possible i looked into the many, many sour gas boiler designs floating round the forums and the internet, and yet very little of it struck me as practical. Most designs have some special feature focus such as trying to make the system (up to natural gas output, usually ignoring pumps and always ignoring natural gas generators) as compact as possible, or making use of fancy tricks and clever exploits to the point of obscure and inexplicable build contortions and small easily-missed hidden items that the entire build will explode without.

I did not want any of that. And so, i took all of these designs, both crude and refined, and i boiled them down to the simplest most straightforward sour gas cooker i could condense. The natural output was a nice, self-contained little hotbox that pumps in one oil well worth of crude (i.e. 3333g/s), and churns out around 1650g/s of water and 18kW of constant power, along with the less desirable trace amounts of dirt, 555g/s of CO₂, and 1111g/s of sulphur. Of the output water, 1kg/s will usually be sent back to the oil well, leaving 650g/s net.

A Super Simple Sour Gas Boiler (1)

As simple and straightforward as this is, some pieces will be non-obvious to those not already familiar with sour gas boiler design, and so i will annotate the pieces and then go over them clearly one by one.

A Super Simple Sour Gas Boiler (2)

Stage 1: Oil Boiler

Crude oil is input at (1). Input oil temperature is not greatly important, and will here be assumed to be 95°C. This oil comes out of the vent as drips (magical items not yet part of the physical world), which are forced to turn into beads (physical tiles of liquid that can be seen in the materials overlay) by the mesh floor at (2). Oil beads travel past the heat exchanger at (3) before being boiled into 550°C sour gas on the diamond heat plate (4). This sour gas then rises, exchanging heat with the falling oil and arriving at (8) at around 150°C.

This combined system can be referred to as a bead pump heat exchanger. The thermal interface medium (3) consists of automation ribbon, radiant liquid pipes, and radiant gas pipes. The materials are not greatly important, but the higher the thermal conductivity, the better. Here i used steel for the radiant gas pipes, and copper for the automation ribbon and radiant liquid pipes. This is an effective combination which uses minimal material. The falling oil beads will actively pump sour gas out of this section, creating a high pressure area at (8).

Stage 2: Sour Gas Condenser

The airlock doors at (8) are player-operated, and can be used to clear natural gas if it forms in the condenser. This does not happen under normal operation, but can be caused by player interference, impatience during startup, or build mistakes. Under normal operation about 100kg per tile of sour gas will accumulate here, flowing slowly down the heat exchanger (9) before being directly condensed into ⅔ liquid methane and ⅓ sulphur by radiant pipes at (10). Sulphur is picked up by the auto sweeper and passed back up the heat exchanger column (9). Liquid methane is pumped to the other side of the heat exchanger where it immediately boils into natural gas at (11). This natural gas rises exchanging heat via (9) until it reaches the pumping area (12).

The heat exchanger here uses conveyor bridges to share heat between incoming sour gas and outgoing natural gas. Diamond window tiles separated by insulated tiles assist heat conduction horizontally while impeding it vertically. The material of the conveyor bridges is not greatly important and even copper ore will work, but here i used steel for generally good thermal conduction.

Both heat exchangers (3) and (9) could be made much shorter with the addition of more thermal exchange media and the use of more highly conductive materials, but this form factor fits well, is easy to construct and explain, looks good, and is mostly clear at a glance.

Stage 3: Power and Output

Natural gas is pumped by steel pumps at (12) to the 25 natural gas generators in the main steam room (13). It is not strictly necessary to have these all in a big steam room. But it is both simple and effective, and so i consider it 20t of steel well spent. Average generator use is about 24.7 out of 25, giving 19.75kW of gross power and creating around 1666g/s polluted water which is allowed to fall into the steam room. Heat from the generators will eventually rise to a point where this water is boiled immediately, turning into 99% steam and 1% dirt. The dirt is collected by auto-sweepers and shipped out. The steam is processed by two mostly-self-cooled steam turbines (14) before either being recycled to maintain steam pressure at around 10kg/tile, or sent directly out. Of this 1650g/s of eventual water, 1kg/s can be sent back to cover the operation of the input oil well, leaving 650g/s net water gain.

Heating and Cooling

Both heating and cooling are provided by a thermium aquatuner at (5). Supercoolant is used for the coolant loop. Aquatuner uptime should be stable at around 40%. If the coolant gets too cold (-182°C which will freeze methane), it is heated by the supercoolant-immersed tepidizer at (6). If the aquatuner chamber gets too hot (630°C or so) heat is dumped into the main steam chamber via the thermal interface plates at (7). The aquatuner is enabled both to ensure the coolant stays cold enough to condense sour gas into methane (-168°C), and the boiling plate is producing sour gas (550°C). With both of the safety features (6) and (7), there is very little that can go wrong. In practical usage the tepidizer (6) is only used when initializing, and for normal operation only the heat dump (7) is occasionally used.

Two self-cooled steam turbines is not quite enough to handle the heat output of 25 natural gas generators along with the occsional dumped heat from the aquatuner, so the briefly-mentioned sulphur from sour gas condensation is passed through the turbine chamber before being ejected. During stable operation this raises the sulphur from around -70°C at the top of (9) to a nice tepid 25-30°C at output. The two self-cooled turbines could be replaced by one turbine and one steel aquatuner, but it looks neater this way and if you are playing Spaced Out that sulphur will be easier to use at room temperature.

Initialization

An auxiliary power source will be needed to run the aquatuner during initialization. This can be plugged straight into the main natural gas generator grid.

Option 1:

Before use, the walls of the condenser should first be cooled so as to avoid flaking liquid methane into natural gas. This is the reason for the very important radiant pipe segments inside the insulated walls at the lowest level of the condenser. This will dump a lot of heat into the main steam chamber, which should either be primed with steam, or have a temporary heat dump of some sort touching the thermal interface plate.

Once the condenser is cooled, some oil should be allowed in to boil. Once it boils into sour gas, normal operation can immediately commence.

Option 2:

For the lazy and impatient, the condenser can be cooled and the oil can be boiled at the same time. A hydrosensor at (4) blocks oil input when 200kg of oil is waiting to boil. An atmo sensor in (10) blocks the oil input when 10 kg/tile of sour gas is waiting to condense. This will create more excess cooling than heat, and thus minimal heat will be dumped into the main steam chamber. As such you can just straight up start shoving oil into the thing from cold and it should eventually work. But it may produce a lot of natural gas inside the condenser while starting up, and some may need to be crushed using the door crusher at (8) if it refuses to clear once the condenser cools enough to start recondensing it.

Failure Cases

There's not actually much that can go wrong. If the input oil is interrupted (which it will be as oil wells need pressure relieved) the large mass of sour gas will simply condense more and more slowly as pressure decreases. It can go up to a cycle with no input before power generation drops to a point where it needs to be jump started.

If it is stalled for longer, power generation may cease thus causing the aquatuner to stall. Simply add power to restart it.

During initizlization sulphur may melt as it travels up the heat exchanger (9). This is not a huge problem as it simply falls back down into the condenser. It may boil some methane and produce natural gas, which can either be crushed at (8) or avoided by disabling the conveyor loader until operation is stable.

If a gas lighter than steam is caught in the steam chamber, it can interfere with the pressure sensor, causing steam to build up forever. Well... just don't let this happen. If the possibility worries you, you can add a gas element sensor next to it and attach it to an alarm for if it ever fails to say "steam". It's also possible to put the atmo sensor near the bottom of the steam chamber where there is some free space.

Hidden tricks

I don't think i used any but let me know if something isn't obvious. I did put one tempshift plate in the main steam chamber touching the thermal interface plate (7). This was useful to spread heat during testing, but may be irrelevant during normal operation.

The vent in the steam chamber drips onto a heavi-watt plate. This is useful to keep the lower half of the chamber nice and hot for boiling the polluted water which all drips down there. An alternative could be to drip it next to the thermal interface plate to help that stay cool. The whole row of insulated tiles under the gas pumps is just space-filler, so the vent can go anywhere there.

Overlays

Full overlays follow in spoilers.

Automation:

Spoiler

A Super Simple Sour Gas Boiler (3)

  • Nat gas pump atmo sensor (12): enables pumps only if pressure is over 3kg
  • Door crusher switch (8): manually controlled
  • Input oil vent (1): closed if over 200kg of liquid on the boiling plate (4) or over 10kg of gas in the condenser chamber (10).
  • condenser pump (10): enabled when liquid methane is over 10kg/tile
  • aquatuner (5): enabled if boiler temperature below 820K (547°C) or coolant temperature above 105K (-168°C)
  • aquatuner heat dump (7): enabled if aquatuner chamber above 900K (627°C)
  • coolant heater (6): enabled if coolant below 90K (-183°C)
  • steam recycling vent (top of 13): open if steam pressure is less than 10kg
  • the automation ribbon (3) is used exclusively for heat transfer, not automation

Electrical:

Spoiler

A Super Simple Sour Gas Boiler (4)

The transformers at the bottom of the chamber feed three internal circuits. One for the tepidizer, one for the aquatuner and condenser, and one for the pumps and declogger. As the pumps are running most of the time, they are supplemented by the steam turbine output, which will be about 700W under stable operation.

Plumbing:

Spoiler

A Super Simple Sour Gas Boiler (5)

  • A supercoolant loop (note the radiant pipes inside two insulated walls, these must be cooled) runs from bottom to top of the condenser.
  • Water from steam turbines self-cools a little, then is either recycled to maintain steam chamber pressure or ejected.
  • The radiant pipe at (3) is used solely for heat exchange.

Shipping:

Spoiler

A Super Simple Sour Gas Boiler (6)

Sulphur gets sent up the heat exchange column (9), then further used to help cool the steam turbines (14). Dirt is just sent out. Conveyor bridges are solely for heat exchange.

Ventilation:

Spoiler

A Super Simple Sour Gas Boiler (7)

Natural gas goes to natural gas generators. CO₂ goes out. The radiant gas pipe at (3) is used for heat exchange.

Pre-Space:

Spoiler

"But what if i don't have thermium and supercoolant???", you ask?

Well the easy answer there is that you should go and get some. But i did actually manage to make a pre-space version using a magma spike for boiling the oil and liquid methane inside a two-aquatuner coolant loop for condensing the sour gas. I needed to prime it using 10% water packets to condense the initial 500kg of liquid methane. Flush the 10% water, replace with the methane, et voilà, liquid-methane-condensed liquid methane. Maybe i'll polish it later and do a writeup. And on my second try, i only broke two pipes!

A Super Simple Sour Gas Boiler (8)

In conclusion, while this isn't the most compact, the most efficient, the highest volume, the most material-lean, etc etc etc, this is a very simple and straightforward boiler. I hope it helps explain the concepts to some who maybe haven't tried to make one of these or were driven off by the complexity of other designs. It nicely creates a closed system with a single oil well, and all you need are the materials to make it and some patience to deal with putting it all together and fixing what few small problems can crop up. Let me know if you have anything to add, or know of some other good simple designs!

A Super Simple Sour Gas Boiler (2024)
Top Articles
Vacheron Constantin  42052/423A-8729 Overseas Medium für 7 946 € kaufen von einem Trusted Seller auf Chrono24
Vacheron Constantin Overseas | Chrono24.co.uk
Spasa Parish
The Machine 2023 Showtimes Near Habersham Hills Cinemas
Gilbert Public Schools Infinite Campus
Rentals for rent in Maastricht
159R Bus Schedule Pdf
11 Best Sites Like The Chive For Funny Pictures and Memes
Finger Lakes 1 Police Beat
Craigslist Pets Huntsville Alabama
Paulette Goddard | American Actress, Modern Times, Charlie Chaplin
Red Dead Redemption 2 Legendary Fish Locations Guide (“A Fisher of Fish”)
What's the Difference Between Halal and Haram Meat & Food?
Rugged Gentleman Barber Shop Martinsburg Wv
Jennifer Lenzini Leaving Ktiv
Havasu Lake residents boiling over water quality as EPA assumes oversight
Justified - Streams, Episodenguide und News zur Serie
Epay. Medstarhealth.org
Olde Kegg Bar & Grill Portage Menu
Half Inning In Which The Home Team Bats Crossword
Amazing Lash Bay Colony
Patriot Ledger Obits Today
Harvestella Sprinkler Lvl 2
Storm Prediction Center Convective Outlook
Experience the Convenience of Po Box 790010 St Louis Mo
modelo julia - PLAYBOARD
Poker News Views Gossip
Abby's Caribbean Cafe
Joanna Gaines Reveals Who Bought the 'Fixer Upper' Lake House and Her Favorite Features of the Milestone Project
Pull And Pay Middletown Ohio
Navy Qrs Supervisor Answers
Trade Chart Dave Richard
Sweeterthanolives
How to get tink dissipator coil? - Dish De
Lincoln Financial Field Section 110
1084 Sadie Ridge Road, Clermont, FL 34715 - MLS# O6240905 - Coldwell Banker
Kino am Raschplatz - Vorschau
Classic Buttermilk Pancakes
Pick N Pull Near Me [Locator Map + Guide + FAQ]
'I want to be the oldest Miss Universe winner - at 31'
Gun Mayhem Watchdocumentaries
Ice Hockey Dboard
Infinity Pool Showtimes Near Maya Cinemas Bakersfield
Dermpathdiagnostics Com Pay Invoice
A look back at the history of the Capital One Tower
Alvin Isd Ixl
Maria Butina Bikini
Busted Newspaper Zapata Tx
Rubrankings Austin
2045 Union Ave SE, Grand Rapids, MI 49507 | Estately 🧡 | MLS# 24048395
Upgrading Fedora Linux to a New Release
Latest Posts
Article information

Author: Rev. Leonie Wyman

Last Updated:

Views: 5901

Rating: 4.9 / 5 (59 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Rev. Leonie Wyman

Birthday: 1993-07-01

Address: Suite 763 6272 Lang Bypass, New Xochitlport, VT 72704-3308

Phone: +22014484519944

Job: Banking Officer

Hobby: Sailing, Gaming, Basketball, Calligraphy, Mycology, Astronomy, Juggling

Introduction: My name is Rev. Leonie Wyman, I am a colorful, tasty, splendid, fair, witty, gorgeous, splendid person who loves writing and wants to share my knowledge and understanding with you.